报告题目:Partitioning claw-free subcubic graphs into two dominating sets
报告时间:2019年12月22日,星期天,上午9:00-9:40
报告地点:365bet北五楼427会议室
报告人:崔庆,南京航空航天大学
报告摘要:
A dominating set in a graph $G$ is a set $S\subseteq V(G)$ such that every vertex in $V(G)\setminus S$ has at least one neighbor in $S$. Let $G$ be an arbitrary claw-free graph containing only vertices of degree two or three. We prove that the vertex set of $G$ can be partitioned into two dominating sets $V_1$ and $V_2$ such that for $i=1,2$, the subgraph of $G$ induced by $V_i$ is triangle-free and every vertex $v\in V_i$ also has at least one neighbor in $V_i$ if $v$ has degree three in $G$. This gives an affirmative answer to a problem of Bacs\'{o}, Bujt\'{a}s, Tompkins and Tuza, and generalizes a result of Desormeaux, Haynes and Henning.
报告人简介:
崔庆,南京航空航天大学数学系副教授,硕士生导师。2009年博士毕业于南开大学,2017年在美国佐治亚州立大学访学一年,主要研究方向为结构图论。先后主持江苏省博士后基金、中国博士后科学基金面上项目、国家自然科学基金青年基金项目等,迄今在Journal of Combinatorial Theory Series B、Electronic Journal of Combinatorics、Discrete Mathematics、Discrete Applied Mathematics等国际学术期刊上发表论文近二十篇。