报告题目:Dynamic Sampling and Testing in Massive Data treams
报告时间:2019年12月16日,星期一,上午11:00-12:00
报告地点:数学楼2-3会议室
报告摘要:
In the modern era, technological advances have led to the emergence of an increasing number of applications requiring analysis of large- scale data streams that are consisted of multiple indefinitely long and time-evolving sequences. Consequently, it is often necessary to develop statistical methodologies that perform inferential tasks in an online manner, and can continuously revise the model to reflect the current status of the underlying process. In this talk, I will briefly some recent development in constructing large-scale dynamic tracking and screening procedures capable of rapidly detecting global anomaly and identifying irregular individual streams.
报告人简介:
任好洁博士,2015年11月至2017年8月,于新加披国立大学工业系统工程与管理系任助理研究员;2019年至今,于宾州州立大学统计系任研究员。在领域内知名学术期刊发表文章(含在审)6篇,工作论文6篇,并在2018年第二届概率统计青年学者大会、统计计算:数据科学的机遇与挑战、高维数据统计分析研讨会、2019 CSIAM-BDAI等学术会议做大会报告。