报告题目:K-Moduli space of del pezzo pairs and K3 moduli spaces
报告人:司飞博士 北京大学
报告时间:2024年5月14日(星期二),上午10:00
报告地点:兴庆校区数学楼2-2会议室
报告摘要:A K3 surfaces together with an anti-symplectic involution can be identified with a pair (X , C) consisting of a del pezzo surface X with a curve C in the linear system |-2K_X|. In this talk, we will present a series of modular compactifications for their moduli space using K-stability. More precisely, we will give an explicit description of K-moduli space P^K(c) parametrizing K-polystable pairs (X, cC) when varying rational number c under the framework of wall-crossing for K-moduli space due to Ascher-DeVleming-Liu. Moreover, we will show that the K-moduli space P^K(c) is isomorphic to certain log canonical model on Baily-Borel compactification of the moduli space of K3 surfaces with anti-symplectic involution. This can be viewed as another example of Hassett-Keel-Looijenga program proposed by Laza-O’Grady. This is based on joint work with Long Pan and Haoyu Wu.
个人简介:司飞,现为北京大学国际数学研究中心博士后,2021年在复旦大学上海数学中取得博士学位,导师为陈猛教授和李志远教授。研究方向为代数几何,尤其是对代数几何中的模空间相关问题感兴趣。目前研究集中在如下领域:
(1)K3曲面模空间的同调理论和相交理论研究;
(2)研究利用几何不变量理论,霍奇理论以及代数K-稳定性理论来探索K3曲面的模空间的双有理几何,以及K-稳定性模空间的显示构造;
(3)模空间同调群的稳定现象,尤其是在曲面上稳定层的模空间上。