报告题目:A conforming DG method for nonlocal problem with integrable kernels
报告人:阴小波,华中师范大学
报告摘要:The numerical solution of nonlocal constrained value problems with integrable kernels is considered in this talk. These nonlocal problems arise in nonlocal mechanics and nonlocal diffusion.The structure of the true solution to the problem is analyzed first. The analysis leads naturally to a new kind of discontinuous Galerkin method that can more efficiently solve the problem numerically. The new method is shown to be asymptotically compatible. Moreover, it has optimal convergence rate for any dimensional case under mild assumptions. We also give some applications of this method, such as to diffusion and sub-diffusion equations.
时间:2024年1月5日星期五,下午2:30—3:30
地点:兴庆校区数学楼2-1会议室
个人简介:阴小波,本科毕业于南开大学数学科学学院,博士毕业于中国科学院数学与系统科学研究院,现为华中师范大学数学与统计学学院教授、博士生导师。主要研究方向为有限元高精度算法、移动网格方法和非局部问题的数值分析。已在SIAM Journal on Numerical Analysis, Journal of Computational Physics, Journal of Scientific Computing, Communications in Mathematical Sciences, Advance in Computational Mathematics等杂志上发表多篇文章。主持三项国家自然科学基金项目,作为主要成员参与一项国家自然科学基金重大研究计划重点支持项目。