学术动态
当前位置: 365bet > 学术动态 > 正文
非线性可积系统与孤立子理论最新进展研讨会
发布时间 : 2023-11-16     点击量:

时间:2023111810:00-12:00

地点:西安交通大学数学楼2-3会议室

 

报告题目:Wave Patterns in Higher-Order KP-I Lumps

报告时间:10:00-11:00

摘要:Wave Patterns in higher-order lumps of the Kadomtsev–Petviashvili I equation at large time is analytically studied. For a broad class of these higher-order lumps, we show that two types of solution patterns appear at large time. The first type of patterns comprises fundamental lumps arranged in triangular shapes, which are described analytically by root structures of the Yablonskii–Vorob’ev (Y-V) polynomials. The second type of patterns comprise fundamental lumps arranged in non-triangular shapes in the outer region, which are described analytically by nonzero-root structures of the Wronskian–Hermit polynomials, together with possible fundamental lumps arranged in triangular shapes in the inner region, which are described analytically by root structures of the Y-V polynomials. Our predicted patterns at large time are compared to true solutions, and excellent agreement is observed.

报告人简介:杨波,宁波大学365bet副教授,硕士生导师。2018年博士毕业于华东师范大学,2018年至2021年在美国佛蒙特大学数学系从事博士后研究工作。目前主要从事可积系统中的非线性波理论和应用方面的研究。近年来主持国家自然科学基金青年项目一项,相关研究成果发表在《J. Nonlinear. Sci》、《IMA J. Appl. Math》、《Physica D》等杂志上。

 

报告题目:Rogue waves in the Massive-Thirring model

报告时间:11:00-12:00

摘要:In this talk, I will talk about general rogue wave solutions in the massive Thirring (MT) model. These rational solutions are derived by using the KP hierarchy reduction method and presented explicitly in terms of determinants whose matrix elements are elementary Schur polynomials. Differing from many other coupled integrable systems, the MT model only admits the rogue waves of bright-type, and the higher-order rogue waves represent the superposition of fundamental ones. Rogue wave patterns are shown to be associated with the root structures of the Yablonskii-Vorobev polynomial hierarchy when one of the internal parameters is large.

报告人简介:陈俊超,丽水学院副教授,博士毕业于华东师范大学。主要从事可积系统和符合计算等研究主持国家自然科学基金项目2项,参与国家自然科学基金项目2项。在如J. Phys. A: Math. Theor., Phys. Rev. E, J. Math. Phys., Stud. Appl. Math. 等杂志上发表SCI论文30余篇,入选ESI 高被引(1/%)论文32013年获国家公派美国联合培养博士生一年,2016年上海市高等院校优秀毕业生,2019年入选丽水市138人才第二层次项目,2020年入选浙江省领军人才青年学者。

陕西省西安市碑林区咸宁西路28号     版权所有 :365bet·(中国)官方网站

邮编:710049     电话 :86-29-82668551     传真:86-29-82668551